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Algebraic structures including multiple rank tensors, linear and non-linear 
operators are related to and represented with various types of graphs. Special 
emphasis is placed on linear operators e.g. on the Hilbert space. A different 
graph represents the same operator depending on the basis frame used, in 
general non-orthonormal. All such graphs are shown to belong in one 
equivalence class and are termed "structurally covariant". Crucial indices 
related to eigenvalues but invariant under any basis frame changes including 
non-orthonormal ones provide one way to characterize each class. A set of 
rules are given that allow one to find the graphs structurally covarinat with 
a given one and /or  to deduce the class indices directly by simple pictorial 
manipulations on a graph. Applications in various fields including the quan- 
tum theory of molecules and reactions are indicated. 
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I. Introduction 

A graph is a superposition out of a set of dots (vertices) and lines.l The lines 
may have scalar "strengths" associated with them. If the lines have direction we 
have the "diagraph" [2]. 

Graphs have been useful in problems involving counting [3,4], coloring [1], 
transversing [1, 3], and in many applied fields [2, 4]. A sizable gap remains however 
between graphs, and the subject of algebraic topology [5, 6] with its more powerful 
theorems. 

The usefulness of graphs is considerably extended if they are associated with 
some algebraic structures as in the theory presented below. The notions intro- 
duced, in particular the "structural covariance" of graphs will relate seemingly 
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unrelated graphs to each other, classify them into certain equivalence classes 
providing thereby some rather useful tools for quantum theory, for the electronic 
structure theory of molecules, for the dynamics of coupled systems, some linear, 
some non-linear, as in chemical reaction systems. 

Discrete, rigid, hence geometric objects in Euclidean n-space, or for example in 
the finite dimensional subspaces of the Hilbert space, have symmetries and 
invariance properties [7] under some subgroups of the O(n) or U(n), (the 
orthogonal or unitary groups) [8] or under the O(n)  or U(n)  themselves [7]. In 
"structural covariance", graphs built on n-spaces need not have symmetries, but 
more generally transform into each other if in the same "L-class", this following 
as will be shown below, from the principle of linear covariance introduced earlier 
[9]. 

In what follows, we first relate and represent algebraic structures with graphs, 
then derive some simple-to-use rules that allow one to find the graphs structurally 
covariant with a given one. One then determines also the crucial invariants of 
such a class of graphs, invariants more general than those of spatial or Hilbert 
space symmetries. Some applications for chemical physics and dynamics are 
noted, these forming the subjects of additional publications. 

2. Algebraic structures and their graphs 

Let {]e~)} be a basis, orthonormal (O.N.) or non-O.N., for V,, a linear vector space 
of dim V, = n. We shall take V, in this paper over the real field R, i.e. I,', =- V,.R 
which cover most of the applications. Extension to the complex field which allows 
several more results especially for quantum theory is deferred. 

To each [e~) we associate a dot (a vertex). [More precisely an "out-vertex", eE> 
to [e~), and an "in-vertex" [> �9 to (e~[ the adjoint (or to (e~[, the contravariant and 
adjoint, if the basis is non-O.N.) [9]]. 

A linear operator on V,, e.g. Q is an n2-term dyad over R. 

Q = qq[e')(dl; q,j ~ n (l) 

Such operators are written as "L-invariants", i.e. independent of any linear 
basis-"frame" [9], with {qij} transforming covariantly while {A U ---lei)(#l} contra- 
variantly under any S e L(n, R), the linear group (~"L") .  

Associating ]#)(#1 with a directed line from i to j, a Q gets denoted by a digraph, 
Go; e.g. for Q =  AlZ+2Az3-O.6A 13, 

2 

O-G= 1 . % ~  (2) 

3 
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If Q is a self-adjoint operator, then for each (i,j), there is in Q a symmetric 
combination A(U)~ l ei)(#t +l#)(eil 

q 
q A i 1 2 )  - ~ 2  

q 

For such Q, we shall replace Eq. (3a) with an (undirected) line: 

1 q 2 
{3a) ), : : 

(3a) 

(3b) 

Thus Hermitian Q have undirected graphs, G. If no "strength" q is indicated on 
a line of G, it is implied that q = +l.  

Q may contain diagonal dyads, A~=-l#)(ei[ (no sum) which introduce loops 
[10, 11] in GD or G; e.g. 

Q = q,le')(e'] +q,21e')(e21 (4a) 

Q' =- qlle ')( e t] +ql2 A('2) 
q,@ 

"---" - = (4b) 
1 q12 2 

Since a directed loop can be twisted, 0 ,  0 a n d O ( = l / 2  0 . 1 / 2 @ l a r e  
equivalent. 

Various other algebraic structures [12] on V, can be generated as higher rank 

tensors T [ qx(1 with p, q, r, s, integers. The T are tensors under L(n, R). 

While linear operators on V, are covered by { TIll, TI)(I, or TI)(I}, higher rank tensors 
are needed for many-particle problems [13], in second quantization, and in some 
non-linear problems such as non-linear chemical kinetics and ecological 
dynamics. 

While 1,1-tensors go into graphs similar to those in customary graph theory [1, 2], 
algebraic structures of higher rank mixed tensors required graphs with several 
kinds of lines [11, 14]. 

N-particle states in quantum theory, for example 1~) of N = 3, 

[~_ ) = mukle')l#)le k) (5) 

use T 3xl), two superimposed terms of which, e.g. [m134]el)le3)]e 4) + m34s[e3)[e4)leS)] 
may be denoted by: 

3 

~ "  / \ \ 5  
m13/. \\ I ~ m31,5 

\ \  / t ././ 
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(ignoring arrows), while a fourth rank tensor's term [e01e2)[e3)[e4) would look like 

2 

1 s .  - ~  / ".3 

4 

a complete graph [3], the K 4. Thus a IxI t) for a given N, will be a weighted 
superposition of several K,. 

With the simplest mixed tensor, (1,1), in the (3, a loop corresponds to a projection 
operator, a line (/j) to a "shift operator" from lej) to le~) or a 2-permutation. 

For higher mixed tensors then (1,I), three kinds of lines are needed. E.g. for the 
l e0[ez)[ e3)(e4[(eS[ component 

The product of N-kets forms a KN, the product of M-bras another complete 
KM, while the two sets of vertices are fully connected from one set to subgraph + 

the other constituting KN, M, a complete bipartite graph [1, 3]. 

The graph of a covariant Nth rank tensor (kets product) is planar [1, 3, 11] for 
N <- ,4, non-planar for N -> 5. Similarly for the contravariant N-dyad (bras). The 
graph of an N x M mixed tensor is planar for N, M < 3, non-planar for N, M >- 3, 
these by the Kuratowski theorems [3]. Beyond that the 1- and 2-topologies may 
be developed as in Ref. [11]. 

Although such graphs appear complicated, they can be studied by compressing 
the KN into a "super-dot" of weight related to N, or of N, and K ~ into another 
one of (M). (cf. Ref. [11]). 

The rest of this paper will concentrate on the 1,1-tensors and linear operators on 
V, itself which make a convenient connection to ordinary graphs with more 
general results than possible with the usual matrix identifications [14]. 

3. Graphs representing the same operator on different basis frames 

An abstract linear operator Q on Tin is a L(n, R)-frame invariant [9]. On a 
particular L-basis frame, O.N. or non-O.N., {[ei)} with (ei[e J) = 6~, but in general 
(eilej) = A o r 6 o ; ([z~[ r 0), the Q is represented by Q = I Q I ~ E q .  (1). Assuming 
Q = Q+ (self-adjoint), Q = qoA (U). Where qo ~ O, there will be an U-line in the 
graph of Q. 

Though Q is L-invariant, the graph G of Q is L-frame dependent. All 
{G, G', G " , . . .  } obtained by transforming the initial L-frame by an S c  L(n, R)  
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will be termed "structurally covariant". All such {G} belong in one and only one 
L-equivalence class [15]. The question is however how to generate such graphs 
from a known one by simple manipulations on a graph itself (Sect. 4). 

,4. Graphs of different operators on the same V, 

Let Q and P be two linear operators on V, each written out on a different L-frame 
thereby having the graphs GQ and G~. In general G o # G~, as also on the same 
frame G o ~ G~ 

If there exists an L-frame such that on it Go looks the same as a d p  in some 

(in general other) L-frame, then we say Q =L p or Q g  P, i.e. Q, P are in the same 

equivalence class. (Proof: Go L= Q, (~p L= p; (~0 = ~P; "" Q L= p). Then, and only 
then, the {n+, no, n_}, n = n++no+n_, the number of (+), zero, and ( - )  eigen- 
values of Q and P will be the same, and conversely. 

Other, covariant, contravariant, and higher rank mixed tensors and operators, 
too, are classified under L(n, R) acting on V, • V~. . .  • V~+• . . .  V~ into L- 
equivalence classes. 

5. Graphs of operators on different vector spaces V.(R) of a vector space field 

In some problems, particularly the quantum theory of molecules, there is a 
different Vn(R3n) at  each point R3n of an Euclidean 3n-space ~3n corresponding 
e.g. to a spatial configuration of a molecule in ~3. These {Vn(R)} define [16] a 
vector space field with each V~(R) isomorphic to a standardized V~ which is 
independent o f  R. 

Let Q(R) and P(R') be operators on Vn(R) and Vn(R') respectively. If in some 
L-frame in V~(R), G o looks the same as a G ,  of P on some L-frame in V~(R'), 
then Q and P will be said to be structurally covariant (Q g P ) .  (Proof follows 
from mapping Vn(R) and V,(R'), then Q and P onto the std. V, and V, • V~, 
then Sect. 4). 

6. Rules for generating structurally covariant graphs 

On any L-frame, in general non-O.N., in a Vn, an operator Q is given by Eq. (1). 
A linear transformation S ~ L(n, R), hence IS[ # 0, takes one to another L-frame. 

s: {I (6a) 

Q = qUA(;~)= glktB(k;~ 

(R(k,)----- IA)(f,I + If,)(A I). 
k / j  - I  - r  s Q = (S.iq Sj )(S k A(rs)S.;). (6b) 

Any S in Eq. (6a) basically gives a linear combination of {[ ei)} over R. It therefore 
can be constructed from a succession of  (a) multiplication of an [ei) by a scalar 
a (  ~ 0) ~ R, (b) addition of an le~) to an [e~), and (c) permutation of  a pair (i ,j).  
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The corresponding contravariant transforms (a') division by a, (b') subtraction 
of (i) from (j), and (c') re-permutation of (i,j), are applied in reverse order [s-l].  

The L-transform of A~) from 

S: {I ei)(ejl + I ej)(e,I} --' {IA)(f,I + Ift)(fk 1} (7a) 

i.e. 
S: {A(0)} -> S{A(ij)}S + (7b) 

S preserves the symmetric property, (ij). 

S ~ L(n, R) may be applied to the object Q itself, changing it into another operator 
(~in V, x V  +. 

S: O--> 0. (8) 

This actual change, as contrasted to an L-frame transform which kept Q the 
same in Eq. (6b), is carried out either by SAS § alone, or by (S-I)q(S -I) alone, 
but not both. 

The {Q, Q, �9 �9 �9 } related by Eq. (8) are on the same "L-orbit",  they are in the same 
L-equivalence class [15], (Q ~(~ = L 0 ' ' '  ). 

Thus a set of graphs {G} on V,, may represent i) a set of distinct linear operators 
{Q}, and/or  ii) representations on O.N. or non-O.N, basis frames of the same 
Q. Either case, all G's on V, are classified into L-equivalence classes. Each graph 
belongs in one and only one L-class. Those {G} of the same L-class are "struc- 
turally covariant". 

The elementary operations that constitute any S ~ L(n, R) in the ket-bra algebra 
are quite straightforward. The corresponding graph operations on {G} however 
are not known. They are given below for undirected graphs which represent 
Hermitian operators. The rules for directed graphs have different applications 
and will be presented elsewhere. 

R u l e  - SI- Any vertex of a G can be multiplied by an arbitrary scalar K ~ R, 
positive or negative, but not zero, without changing the L-class of G. (G ~G') .  

Multiplication of a vertex i by K means all lines (or their strengths) coming out 
(undirected) of that i are multiplied by K. A loop at i is however multiplied by (K2). 

Proof: In 

Q = q~ ~ G 

taking e.g. the i = 1 vertex, the sum over the other index j gives the "star" of 1, 
i.e. all the lines of I. 

n N 

Q= Z qUlel)(ejl+ Z qillei)(e,l+qllle,)(ell 
j > l  i:>1 

Multiplying the vertex 1 implies le~)--,Kle~) 
therefore Y.j~KqUlel)(ej], the K-stretched 

(9) 

and (e~[~K((ell yielding in Q 
out-going lines from (I), and 
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~gr Kq"[eg)(e~], K-stretched incoming lines to 1. Hence the undirected lines are 
~c-stretched. The loop becomes ~le,)(e,l~ = K21e,)(e,I. 

The K-multiplication is an SOS + = Q' form with this S(K) ~ L(n, R). Thus Q & Q'. 

R u l e  - $2: Any vertex (i) without loops can be lifted up and placed onto any 
other vertex (j) not directly connected to (i) carrying the lines of (i) onto (j). 
The original lines are also retained. If in the process two lines superimpose their 
strengths are algebraically added. 

Proof: The operation is le,)~ lei)+lej) and simultaneously on the bra. This is an 
elementary S~ L(n, R) and S + for the bra. On a Q =  Q+, therefore Q ~(~ and 
G ~ G .  

For the (i) terms of Q, i.e. the "star" of (i) in G(~- i*) 

i*=- Y~ q~k[leg)(ek] +]ek)(eil] 
k r  

i* + )~ qgk[lej)(ek I +lek)(ejl] 
k ~ j  

Thus G acquires additional lines from j to the original star-termini of i. The 
degree o f j  is increased. The new G is structurally covariant with G. 

R u l e  - LI: If i and j 6 G are directly connected (qU # 0), when the star of i is 
placed on j as in Rule - $2, j acquires in addition a loop of strength 2q ~ 

Proof: When [e~)-~ leg)+ (ej) (an~ the bras) in Q, the term q O[[eg)(ej[ + [ej)(eg[] gets 
added the term 2qgqej)(ej[. 

R u l e  - L2: If (i) had a loop on it of  strength qgi, when the star of i is added onto 
(j), a line (0) of strength q" is added from i to j (undirected here for Q = Q+) 
as well as a loop of strength q~ shows up of (j). The original loops and lines in 

G are too retained. Then (~ g G. 

Proof: With leg)~ leg) +[ej), and similarly for (eg[, q"leg)(eg[ ~ qggleg)(~ +q"[leg) 
(ejl +[ej)(eg[] +q"lej)(e~l. 

In addition to the linear combination operations generated by the four rules 
above, an S c  L(n, R) may also contain some permutations, e.g. leg)-~lej), and 
l ej)~ leg). Permutations simply permute the vertex labels on a G. These would 
affect sometimes a rigid geometry, but do not alter the nature of G as a graph 
(or a simplicial complex). 

The above, two star-rules, and two loop rules may be applied any number of 
times and in any sequence desired, to a (3. Any SQS § Q hence Q g 0  can be 
carried out this way on a G of Q. Any S c L(n, R) can be constructed this way, 
including some permuations. Conversely any star-loop operations combination 
is an S ~ L( n, R ). 
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The following lemma may also be found at times useful vis-a-vis operations on 
a G. Lemma: If G = G1 @ G2(~ �9 �9 �9 a superposition of not necessarily connected 
subgraphs, star-loop operations (and permutations) may be applied simul- 
taneously to each subgraph; then t~= G~O -+ G2. (Proof is immediate from the 
bilinearity of Q and the linearity of S). 

7. Two kinds of uses of the rules and examples 

Given a linear operator Q on Vn, R or a graph G representing such a self-adjoint 
Q on some linear basis frame, O.N. or non-O.N., the rules may be used in two 
ways: (i) to deduce directly from a G of Q, the crucial L(n, R)  invariants, i.e. 
the LPI-= {n+, no, n_}, the numbers of (+), (0), and ( - ) ,  eigenvalues of Q (and of 
the entire L-class D {Go} ). In e.g. electronic structure theory, the LPI are physi- 
cally the most crucial properties, the numbers of bonding, non-bonding, and 
anti-bonding molecular orbitals of Q--> h, the Hfickel-like MO Hamiltonian. 

(ii) Various Q's or G's  structurally covariant with the given ones, therefore in 
the same L-class, and hence with the same LPI may be deduced by simple 
pictorial manipulations on a G only. In molecular theory, this gives the set of 
molecules or atom clusters which have qualitatively the same "thermicity" or 
rough stability. One sees that two different looking molecules if structurally 
covariant, in fact look the same (same G) after describing one in a certain new 
linear "coordinate" (basis) frame which is in general non-orthonormal (hence 
overlooked in quantum chemistry hitherto) [15]. 

Since the LPI are also directly related to the rank (n - no), and signature (n+-  n_) 
of Q, the rules also readily give these from any G description of a Q. Many 
applications in mathematical physics require these quantities. 

One significant use of the rules, would be also in seeing which parameter changes 
in a Q would affect the LPI and which not, thereby charting out the physical or 
computational regions for {Q} with the same qualitative behavior. 

In another set of applications, in network dynamics [16] and dynamic stability 
theory [17], a local Q around a steady state is in general non-Hermitian. Then 
the version of the present rules for directed graphs [18] may be used to determine 
regions of  stability, or types of instability around steady states in coupled reaction 
systems. 

Several examples below for Q = Q+ with undirected G's illustrate the rules and 
some of their applications. 

Examples: (A) To illustrate first the star and loop rules as well as give a result 
interesting in itself, we take any straight or branched chain with lines of strength 
+1. E.g. for n = 3, in Eq. (G1), we see by rule-S1 that multiplying any vertex with 
an arbitrary number K causing thereby various types of stretches of (abc) leaves 
the graph structurally covariant and therefore also of the same LPI. 
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b 

v 

SC 

(k" x b) 

b 

SC k / / ~  

(k x a) 

b cy ~, ,b 

Q C Q 

(G1) 

Similarly multiplying say a with (-1),  but then by rule-S2, taking a onto c yields 
in (G2), 

1 l c  SC = 

1_Ii~ c 

(G2) 

In the last step, a single line segment (ab) that results has the sub-LPI, n+ = l, 
n_ = 1 as can be deduced by the loop rules as in (G3). 

The above example gives e.g. the MO level patterns of H3 and H3 during various 
large deformations of these species. 

SC ~ I-L.2=(~20 

x(1/21 

",2 +2 

,@ sc _2@ 
o b o b 

(-2) x 

2t I-+ 
b a 

x(I/2) 
' tl 0 
b 

(G3) 

For a branch attached to a "star" type of graph as in (G4): 

x(-1) 

O C 
C 

. ' .  LFM=(n,=2. ~=3. n_=2} 

(64) 



264 O. Sinano~lu 

Thus using the rules, theorems for the numbers of  (+),  (0), and ( - )  eigenvalues 
of  any size and type of  "tree" with even or odd n, with any number of  straight 
chain or star subgraphs are readily deduced. 

(B) With graphs involving single or multiple rings, our first strategy will be to 
use the rules so as to break open the rings. Then to find the LPI, the rules are 
used so as to reduce the graphs into a number o f  isolated dots ( #  = no), and 
single line segments (CA = n§ = n_). Along the way various graphs result each 
structurally covariant with the initial graph and to each other. E.g. 

x(-1) 

SC ~ ~ x(-l) 

sc+ 
1 / 

~  LPl={n,=n_=4) 

In such ways, the LPI's and structurally covariant sets o f  a large number of  planar 
and non-planar graphs (in both the Kuratowski sense and the ordinary sense) 
and "homologous" series of  graphs have been derived by the author and will be 
reported as a compilation.  

The MO level pattern of  classes o f  molecules as well as their behaviour after 
large deformations or rearrangements are similarly derived. 
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